

LABORATÓRIO DE RADIOATIVIDADE NATURAL UNIVERSIDADE DE COIMBRA

INDOOR RADON AND THORON LEVELS IN THE SOUTHWEST REGION OF ANGOLA

BAPTISTA, E., PEREIRA, A.J.S.C., **DOMINGOS, F.P.,** SÊCO, S.L.R.

15th GARRM 2021 22-24 September 2021 Prague

1. Evaluate indoor radon (²²²Rn) and thoron (²²⁰Rn) concentrations:

- Estimate the % of buildings above WHO and ICRP reference levels (100 and 300 Bq/m³)
- Assess the influence of building usage (dwellings vs. workplaces), building materials and underlying geological units;

2. Estimate the total annual inhalation dose in dwellings and workplaces:

• Estimate the % of workplaces surpassing the 1 mSv threshold set by the Council Directive 2013/59/EURATOM;

Materials & Methods

- 81 RADUET detectors (Radosys Ltd.) placed between 0.8 to 2.0 m above ground level
- Average exposure: **3 months**
- Revelation of the detectors according to ISO 11665-4:2020 (accredited method)
- Estimation of the **total annual inhalation dose**^[4]:

 $\{(0.17 + 9 \times F_{Rn}) \times C_{Rn} + (0.11 + 40 \times F_{Tn}) \times C_{Tn}\} \times OF \times T \times 10^{-6}$

 F_{Rn} and F_{Tn} - equilibrium factors for ²²²Rn and ²²⁰Rn progeny (0.4 and 0.02)^[5] C_{Rn} and C_{Tn} - measured ²²²Rn and ²²⁰Rn activity concentrations (in Bq/m³) OF is the occupancy factor (0.79 for dwellings and 0.2 for workplaces according to the Angolan Labor Law)

Materials & Methods

Building usage

Building materials

Geological units

Left: Workplace constructed with metal plates; Right: Dwelling built with stones.

Materials & Methods

A) Clay (Adobe); B) Concrete block; C) Metal (metallic plates); D) filled clay brick; E) hollow clay brick; F) Stone;

Building usage

Adapted and reinterpreted from the Geological Map of Angola at the scale of 1: 1.000.000^[1,2,3]

Results & Discussion: Indoor radon and thoron concentrations

Results & Discussion: Indoor radon and thoron concentrations

Results & Discussion: Total annual inhalation dose (in mSv/y)

		OF	Ν	AM	SD	Min	Q 25	Med	Q75	Max	MAD	CV
Building usage	Dwellings	0.79	40	1.89	1.02	0.51	1.20	1.50	2.44	5.28	1.06	54
	Workplaces	0.20	41	0.44	0.42	0.06	0.19	0.26	0.46	1.85	0.15	95
Building materials	Clay	0.79	4	1.76	0.66	1.07	1.27	1.78	2.27	2.42	0.81	38
	Concrete	0.79	9	1.86	0.97	0.76	0.85	2.11	2.27	3.50	1.01	52
	Metal	0.79	8	1.06	0.56	0.25	0.84	0.99	1.26	2.19	0.41	53
	Stone	0.79	1	0.36	nd	nd	nd	nd	nd	nd	nd	nd
	Filled brick	0.79	29	1.70	1.42	0.39	0.78	1.22	2.37	5.88	0.70	84
	Hollow brick	0.79	30	2.11	1.58	0.46	1.07	1.50	2.69	7.20	1.02	75
Geological unit	EGM	0.79	71	1.67	1.21	0.36	0.89	1.28	2.23	5.88	0.77	72
	CG	0.79	5	2.21	1.39	0.25	1.77	2.21	2.79	4.05	0.86	63
	LF	0.79	1	2.22	nd	nd	nd	nd	nd	nd	nd	nd
	PEMR	0.79	2	0.80	0.06	0.76	0.78	0.81	0.83	0.85	0.07	8
	RGP	0.79	2	5.78	2.02	4.35	5.06	5.78	6.49	7.20	2.11	35

Variables: OF – Occupancy factor; AM – Arithmetic mean; SD – Standard deviation; Min – Minimum; Q25 – First quartile; Med – Median; Q75 – Third Quartile; Max – Maximum; MAD – Median absolute deviation; CV – Coefficient of variation;

Geological units: EGM – Eburnean granitoids and migmatites; CG – Chela Group; LF – Leba Formation; PEMR – Post-Eburnean Mafic Rocks; RGP – A-type red granites and porphyritic rhyolites; nd – not determined

Results & Discussion: Total annual inhalation dose (in mSv/y)

- Log-normal distribution (dwellings and workplaces)
- **Dwellings:** 0.51 to 5.28 mSv/y, with a median of 1.50 mSv/y;
- Workplaces: 0.06 to 1.85 mSv/y, with a median of 0.26 mSv/y;
- 1 mSv threshold established in the Council Directive 2013/59/EURATOM is exceeded in 12% of workplaces;

Conclusions & Implications

- Indoor radon levels are generally below 300 Bq/m³
- The contribution of ²²⁰Rn to the total indoor radon activity concentration averages 35%, but may reach 95%
- Highest indoor ²²²Rn, ²²⁰Rn and AID values: **A-type red granites and porphyritic rhyolites**
- Higher indoor ²²⁰Rn and AID values: Clay, concrete and hollow brick-based constructions
- Higher indoor ²²²Rn, ²²⁰Rn and AID values: **Dwellings**
- Indoor ²²²Rn and indoor ²²⁰Rn are not correlated indicating both must be estimated independently for a proper estimation of the contribution of ²²⁰Rn to the AID

*This work is submitted to the Environmental Geochemistry and Health Journal

References

[1] LNICT (1980). Geologia de Angola, Carta na Escala 1/1000000, coordenada por Heitor de Carvalho, Laboratório Nacional de Investigação Científica Tropical, Folha nº 3.

[2] Pereira, E., Rodrigues, J.F., Tassinari, C.C.G., Van-Dúnem, M.V. (2013a). Geologia da Região de Lubango, SW de Angola. Evolução no contexto do cratão do Congo. Instituto Geológico de Angola, 160 p.

[3] Pereira, E., Rodrigues, J., Van-Dúnem, M.V. (2013b). Carta Geológica de Angola, à escala 1: 250 000: Folha Sul D-33/T (Chibia). Publicação do Instituto Geológico de Angola.

[4] UNSCEAR, United Nation Scientific Committee on the Effect of Atomic Radiation (2000). Annex B: Exposures from Natural Radiation Sources. United Nations, p. 104.

[5] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (2010). Source and effects of ionizing radiation. UNSCEAR 2008, report to the general assembly with scientific annexes, I, 463 p.

*Baptista, E., Pereira, A.J.S.C., Domingos, F.P., Sêco, S.L.R. Radon and thoron concentrations in the Southwest region of Angola: Dose assessment and implications for risk mapping. *Submitted to the Environmental Geochemistry and Health.*

IAT

LABORATÓRIO DE RADIOATIVIDADE NATURAL UNIVERSIDADE DE COIMBRA

THANK YOU FOR YOUR ATTENTION!

BAPTISTA, E., PEREIRA, A.J.S.C., DOMINGOS, F.P., SÊCO, S.L.R.

15th GARRM 2021 22-24 September 2021 Prague

