Origine and tranport of radon in wet and dry mofettes of Covasna Town, Romania

István Csige^{1,3}, Sándor Gyila², Erzsébet Sóki¹

¹Institute for Nuclear Research, ATOMKI, ICER, H-4026 Debrecen, Bem tér 18/c, Hungary ²Dr. Benedek Géza Hospital of Cardiology, RO-525200 Covasna, M. Eminescu u. 160, Romania ³University of Debrecen – ATOMKI, Department of Environmental Physics, Debrecen, Hungary

Results of measurements and model calculations

Model

Spatial variation of ²²²Rn activity concentration in deep bedrock and sedimentary rocks:

$$D_i \frac{d^2 C}{dz^2} - v \frac{dC}{dz} + G_i - \lambda C = 0$$

where

C(z) is the ²²²Rn activity concentration in the liquid phase that completely fills the pore space ($Bq \ m^{-3}$),

 D_i is dispersion coefficient,

 G_i is Rn-source term,

v is the average interstitial velocity of groundwater.

Model

The radon balance equation for the water in the pool of the Hell-mud (Pokolsár) is:

$$\frac{dC_w}{dt} = \frac{1}{z_2 - z_1} (j_2(z_2) - j_b - v\phi C_w) - \lambda C_w \,.$$

Here $j_2(z_2)$ is the bulk ²²²Rn activity flux density at the bottom of the pool, which can be specified as:

$$j_2(z_2) = (v - D\gamma_2)e^{\gamma_2 z_2}\phi C_{s0} + v\phi \frac{G_s}{\lambda}.$$

 j_b is the ²²²Rn activity flux density transported from the water to the gas phase of the pool by bubbles. This term is obtained by multiplying the volume flux density Q_{bV} of carbon dioxide gas in the bubbles (m^3/m^2s) and the ²²²Rn activity concentration in bubbles ($C_b = C_w/H^{cc}$).

 $j_b = Q_{bV}C_b \, .$

Model

The ²²²Rn activity concentration in bubbles is related to the ²²²Rn activity concentration in the water (C_w) through the Henry's partition coefficient (H^{cc}), the temperature dependence of which is given as

$$H^{cc}(T) = \frac{C_w}{C_b} = H^{cp}(T) R T = H_0^{cp} R T e^{\alpha \left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

- R = 8.314 J/(mol K) is the ideal gas constant,
- T, [K] is the absolute temperature and
- $T_0 = 298.15 K$ is a reference temperature.

 H_0^{cp} and α are constants that can be determined experimentally.

There is a similar relationship between carbon dioxide dissolved in molecular form in water and the concentration of carbon dioxide in gas phase.

Model

Volumetric flux density (Darcy velocity) of water entering the pool at the bottom is:

$$q = v\phi$$
 , $[m^3/m^2s]$.

Flux density of dissolved carbon dioxide transported by water is:

$$Q = q * [CO_2]_w$$
, $[mol/m^2s]$.

Flux density of carbon dioxide gas that separates from water in the form of gas bubbles is $Q_b = q([CO_2]_w - [CO_2]_t)$, $[mol/m^2s]$,

where $[CO_2]_t = H_{CO_2}^{cp}(T)p_{CO_2}$ is the equilibrium concentration of carbon dioxide dissolved in water at partial pressure of carbon dioxide in bubbles of $p_{CO_2} = 10^5 Pa$ and at temperature *T*. Finally we need to convert the material flux density into a volume flux density. This requires the use of molar concentration of carbon dioxide in the bubbles. According to the ideal gas equation: $p_{CO_2} = [CO_2]_b RT$, from which $[CO_2]_b = p_{CO_2}/(RT)$.

The volume flux density of carbon dioxide leaving through bubbles is:

$$Q_{bV} = \frac{Q_b}{[CO_2]_b}$$
, $[m^3/m^2s]$.

The radon flux density leaving through bubbles is:

$$j_b = Q_{bV}C_b = Q_{bV}\frac{C_w}{H_{Rn}^{cc}(T)}$$
GARRM-2021, Prague

Model

Substituting all of these in the equation of radon balance of pool space in stationary case:

$$(v - D\gamma_2)e^{\gamma_2 z_2}\phi C_{s0} + v\phi \frac{G_s}{\lambda} - Q_{bV}\frac{C_w}{H_{Rn}^{cc}(T)} - v\phi C_w - \lambda(z_1 - z_2)C_w = 0.$$

from which:

Model

The remaining radon content of the water:

$$C_w = \frac{\frac{\phi}{\lambda} \left\{ \frac{(v - D\gamma_2)\gamma_1}{\gamma_2 - \gamma_1} (G_s - G_d) e^{\gamma_2 h_s} + vG_s \right\}}{\frac{Q_{bV}}{H_{Rn}^{cc}(T)} + v\phi + \lambda h_w}$$

where

 $h_s = (z_2 - z_3)$ is the thickness of the sediment under the bottom of the pool and

 $h_w = (z_1 - z_2)$ is the thickness of the water layer in the pool.

In the water of the wet mofette, carbon dioxide is degassing, and flashes out much of the radon, too.

²²²Rn Activity Concentration, [kBqm⁻³]

Model

The remaining radon content of the water:

$$C_w = \frac{\frac{\phi}{\lambda} \left\{ \frac{(v - D\gamma_2)\gamma_1}{\gamma_2 - \gamma_1} (G_s - G_d) e^{\gamma_2 h_s} + vG_s \right\}}{\frac{Q_{bV}}{H_{Rn}^{cc}(T)} + v\phi + \lambda h_w}$$

where

 $h_s = (z_2 - z_3)$ is the thickness of the sediment under the bottom of the pool and

 $h_w = (z_1 - z_2)$ is the thickness of the water layer in the pool.

Dry mofettes of Covasna, Romania

The very same hydrogeological and radon transport model can be applied to both wet and dry mofettes of Covasna!

Dry mofettes of Covasna, Romania

Dry mofettes of Covasna, Romania

Mapping of Indoor Radon in Kovászna

Acknowledgements

The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2-15-2016-00009 'ICER'. The research was also partly financed by the Higher Education Institutional Excellence Programme (20428-3/2018/FEKUTSTRAT) of the Ministry of Human Capacities in Hungary, within the framework of the 4. thematic programme of the University of Debrecen.