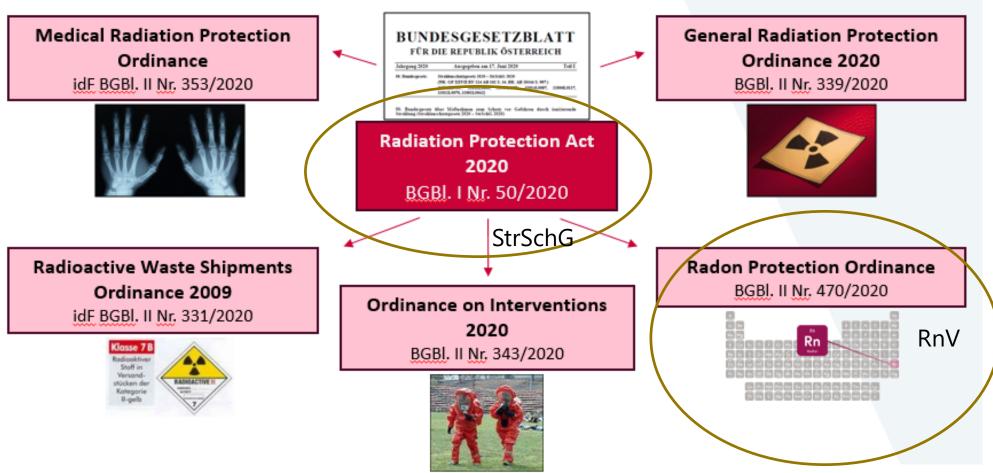


Identification and delineation of radon areas in Austria

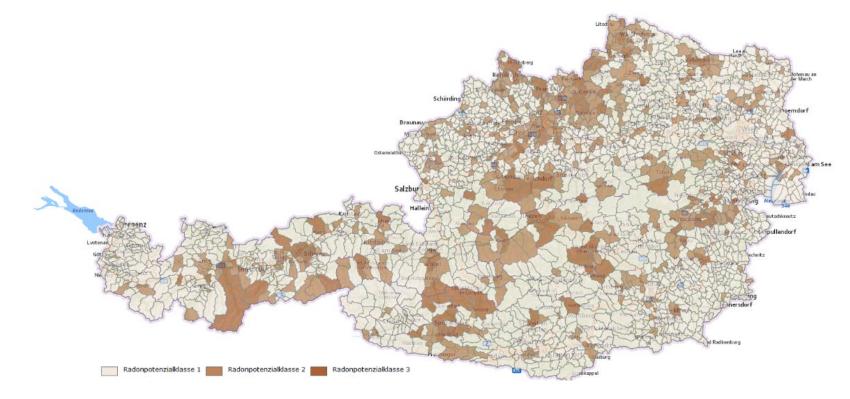

Valeria Gruber, S. Baumann, G. Wurm, O. Alber, W. Ringer

Austrian Agency for Health and Food Safety (AGES), Radon and Radioecology

15th International workshop GARRM, Prague, 21-23.9.2021

Background

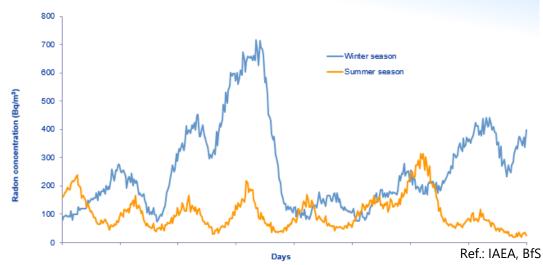
Implementation of EU-BSS in Austrian legislation



Reference: BMK

AGE

Background Austrian Radon potential map (ÖNRAP 1, 1992-2004)


BUT:

- > 10 years old
- Small number of dwellings per municipality (3-5) (about 9,000 dwellings in total)
- Different measurement systems used (charcoal, electrets, track etch)
- Maximum measurement time 3 months, > 50% short term (few days)

Design of the new Austrian indoor radon survey ÖNRAP 2 (2013 – 2019)

- Purpose: Reliable delineation of radon priority areas
- Geograhpically-based survey
 - All populated areas should be uniformely covered with measurements
- One single measurement method:
 - Track etch detectors
 - 6 months (half winter, half summer time)
 - 2 rooms (preferably ground floor or lowest inhabitated floor)

Design of the new Austrian indoor radon survey Selection of measurement points (dwellings)

Gemeindearenzer


2 x 2 km-Raster (ETRS-| AEA-Ra

- Data basis for selection of dwellings:
 - Members of voluntary fire brigade
 - 360,000 members 4% of population

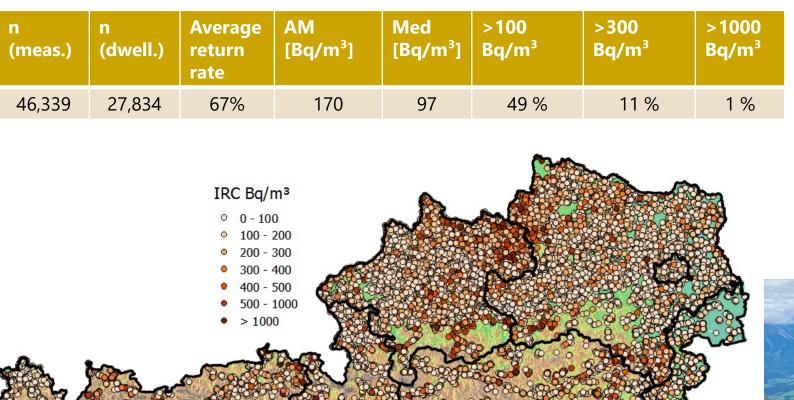
- depending on heterogenity of geology
- At least 12 dwellings per municipality
 - selected 15-20 (anticipate loss, non-return)

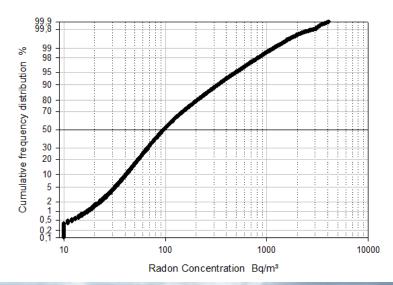
AGES

🦰 Questionnaire

- building characteristics, living habits
- Organisation of measurement campaign and distribution of detectors/questionnaires via (local) voluntary fire brigades

Vorname:	AdrID:	In	tID:				
Nachname:	Strasse:						
Telefon:	Ort:						
Email							
1 Gesam ah der Wohneinhei en im	Sebāu e: 1 2 3	MEHR ALS 3	34.1.1				
2 Nutzung des Gebäudes: EIN-/ZWEI	FAMILIENHAUS WOHNUNG	BAUERNHA					
WOCHENENDHAUS/-WOHNUNG	SONSTIGES:					h.	
3 Gebäutetvo: KONVENTIONELLE BAU	JWEISE NIEDRIG-/NIEDRIGSTE	ENERGIEH/	Kärster Landisfeuerwehrverbar			le le	Gemeindebund
PASSIVHAUS UNBEKANNT	SONSTIGES:		LAND		anleitui	ng	AGES
4 Wann wurde das Haus fertig gestellt	L VOR 1919 1919-1944	1945-1					+
	UNBEKANNT BAUJAHR FALLS	BEKANNT	Auswahl der Räume				Education de
5 Lage des Gebäudes: ALLEINSTEHEN	ID ZUSAMMENGEBAUT MIT N	NACHBAR	Wählen Sie als Messorte die meist Wohn-, Schlaf- oder	Kinderzimmer. Git	ot es nur ein	Stockwerk, d	
Hanglage: JA NEIN			Radondetektoren einfach in d	en beiden meistben	ützten Räumen.		
7 Ist das Haus unterkellert: GANZ	TEILWEISE NICHT	UNBEKAN	Messbeginn				
8 Fundamenttyp: FUNDAMENTPLAT	TE DURCHGEHEND FUNDAME	NTPLATTE	 Eintragen des Messber Dann f ür die beiden au 			he unten)	
STREIFENFUNDAMENT	UNDAMENT UNBEKANNT		 Eintragen der Beze Ablösen der Etiket 	ichnung des Raume	s mit Stockwer		
9 Hauptbaumaterial des Fundaments:	ESTRICH (BETON) 📃 ZIEGEL,	STEINPLA	und Einkleben in d	ie entsprechenden F Numiniumbeutels u	elder		
SAND, ERDE UNBEKANNT	SONSTIGES:						Radondetextoren
0 Hauptbaumaterial der erdberührten	Wände: BETON SCHALUN	GSSTEINE	Wählen Sie für die Aufstellung – nicht nahe bei Türen o	der Fenstern liegt u	ind an dem keir	ne Zugluft herrs	
ZIEGEL STEIN UNBEKAN	INT SONSTIGES:		 nicht stark erwärmt wi sich etwa in normaler 	Atemhöhe befindet	te Sonnenbestri	ahlung oder He	izung)
Hauptbaumaterial der Wände: ZIE	GEL BETON STEIN	HOLZ	 unzugänglich f ür Klein 	kinder ist			
UNBEKANNT SONSTIGES:			Messende 1. Eintragen des Messen	des in das vorgeseh	ene Feld (siehe	unten)	
Sind die Fenster: SEHR DICHT	DICHT WENIG DICHT	UNBEK/	 Fragebogen und Mess Radondetektoren zusa 	daten kontrollieren,	gegebenenfalls	Bemerkungen	
3 Überwiegende Art der Heizung; Ha	AUSZENTRALHEIZUNG 📃 ELEKTR	0	Messbeginn (Datum):		Messende		······ 9 -····· 9 -····
WOHNUNGSZENTRAL-, ETAGENHEIZ	UNG MECHANISCHE WOHNRA	AUMBELÜF	Messoeginn (Datum):		Messende	(Datum):	
SONSTIGES:			Bezeichnung des Rau	nes !	itockwerk	Ist der Raum erdberührt?	Serien-Nummer d Radondetektore
4 Wurden beim Bau Radon-Vorsorgen	naßnahmen installiert; JA	NEIN	SCHLAFZIMMER KIN		ellergeschoß		
5 Wurden im Gebäude Sanierungen d	urchgeführt: NEIN 🗌 UNBEKA		WOHNZIMMER (WO	HN-)KÜCHE	rdgeschoß	AC	Etikette vom
RADONSANIERUNGJAHR:	THERMISCHE SANIERUN	NG JA	ESSZIMMER		Stock		Aluminiumbeutel hier einkleben
6 Frühere Radonmessungen: JA	JAHR: NEIN	UNBEK	Locarinar		. Stock	NEIN	
7 Personen im Haushalt: ERWACHSE	NE: KINDER (UNT	TER 15):	SCHLAFZIMMER KIN		ellergeschoß		
					rdgeschoß	AC 🗌	Etikette vom
							Aluminiumbeutel
			ESSZIMMER		. Stock	NEW	hier einkleben


Bemerkun


, Stock

Results of the Austrian indoor radon survey

Overview

Journal of Environmental Radioactivity 233 (2021) 106618

Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: http://www.elsevier.com/locate/jenvrad

The new Austrian indoor radon survey (ÖNRAP 2, 2013–2019): Design, implementation, results

Valeria Gruber^{a,*}, Sebastian Baumann^a, Gernot Wurm^a, Wolfgang Ringer^a, Oliver Alber^b

^a Austrian Agency for Health and Food Safety (AGES), Department for Radon and Radioecology, Wieningerstrasse 8, 4020, Linz, Austria
^b Austrian Agency for Health and Food Safety (AGES), Department of Statistics and Analytical Epidemiology, Zinzendorfgasse 27/1, 8010, Graz, Austria

ARTICLE INFO

ABSTRACT

Keywords: Radon areas National radon survey Survey design Geology Building characteristics The delineation of radon prone areas is one of the central requirements of the European Council Directive 2013/ 59/EURATOM. It is quite a complex task which usually requires the collection of radon data through an appropriate survey as a first step. This paper presents the design and methodology of the recent Austrian radon survey (\ddot{O} NRAP 2, 2013–2019) and its implementation. It details the results of the nationwide survey as well as correlations and dependencies with geology and building characteristics. The paper also discusses the representativeness of the survey as well as advantages and disadvantages of the selected approach.

For the purpose of establishing a new delineation of radon prone areas in Austria we distributed approximately 75,000 passive long-term radon detectors. They were offered to selected members of the voluntary fire brigades and this resulted in about 50,000 radon measurements. Thus, a return rate of about 67% was achieved. The distribution of the radon results closely follows a log-normal distribution with a median of 99 Bq/m³, a geometric mean of 109 Bq/m³, and a geometric standard deviation factor of 2.29. 11% of the households show a mean radon concentration above the national reference level of 300 Bq/m³.

Important data on building characteristics and the location of the measured rooms were collected by means of a specific questionnaire and a measurement protocol that were handed out together with the radon detectors. We were able to identify significant correlations between the indoor radon concentration and geology, the year of construction, and the coupling of the room to the ground (basement yes/no, floor level).

Being a geographically-based and not a population-weighted survey, the comparison of building characteristics with the Austrian census data confirms that rural areas are over-represented in this survey.

As a summary, the selected approach of conducting passive long-term radon measurements in selected dwellings of members of the voluntary fire brigades proved to be an efficient method to collect reliable data as a basis for the delineation of radon prone areas. The next step was to eliminate factors that influence the measured radon concentration through appropriate modelling. Based on the results predicted by the model radon areas are then be classified. This will be presented in a subsequent publication.

Modelling

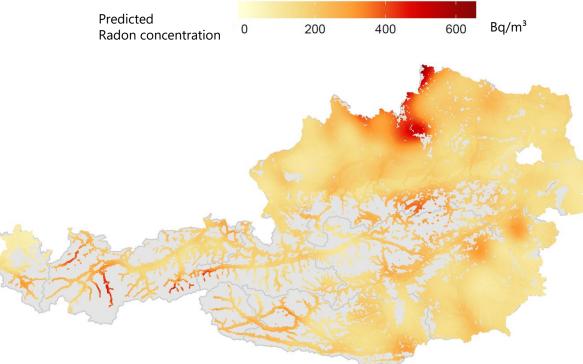
- Geostatistical Modelling Generalised Additiative Mixed Model (GAMM)
 - Modelling the results of the Indoor Radon Concentration (IRC) in dependency of explaining factors (based on Borgoni et al., 2014):
 - Building characteristics & living habits
 - Geology
 - Spatial correlation
 - To evaluate influence of variables (building characteristics) → Stepwise forward selection with 5-fold cross validation

(thin plate regression splines),

spatial intercept

Fixed effects according to the relevant
parameters (building characteristics)

$$log(IRC_{ij}) = \beta_0 + \beta_1 Z_{ij} + \dots + \beta_m Z_{ij} + s(x_j, y_j) + u_j + \varepsilon_{ij}$$
Intercept (Rn background level)
Smoothing function
Random effect (dwelling)
Random effect (dwelling)
rest variation

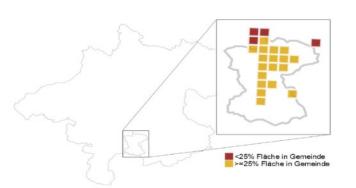


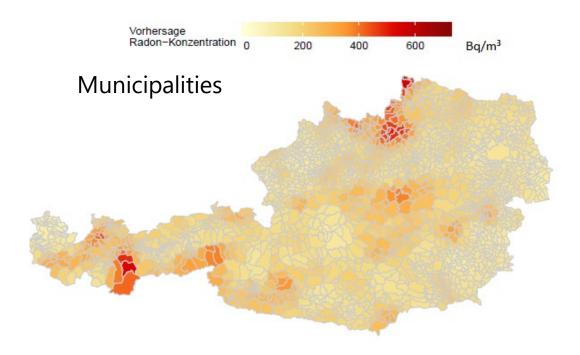
Relevant factors:

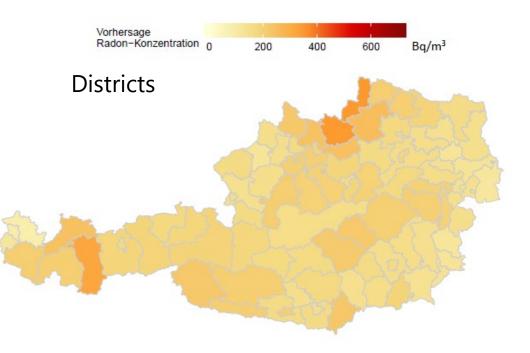
- earth-boundness
- year of construction
 - floor
- geology
- basement
- stone walls
- thermal retrofitted
- usage of building
- number of adults
- low-energy house
- window tightness
- foundation

Prediction of radon concentration in a reference house

- Prediction of indoor radon concentration (IRC) for reference house on 250 x 250 m grid (Radon potential of the grid cell)
- Definition of reference house has strong impact
- Reference house representative for requirements for workplaces and for costefficient newly built house
 Predicted Brden construction
 0
 200
 400
 600
 Bq/m³







Radon potential of the municipality

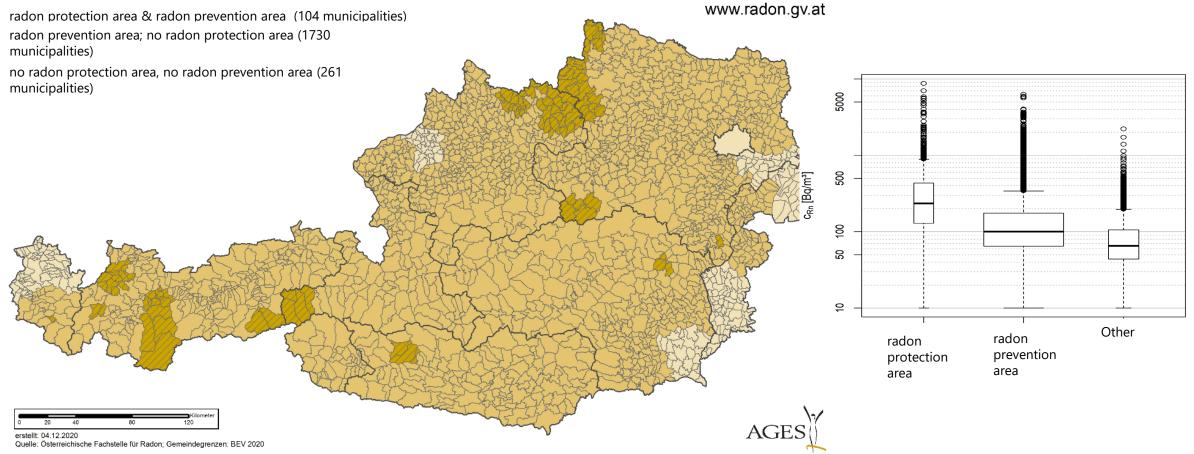
- For administrative reasons radon map for administrative unit (municipalities, districts)
- Radon potential of municipalities/district: average of all predicted IRC of grid cells (250 x 250 m) in the settlement area of the municipality/district

Advantages of the Modelling approach

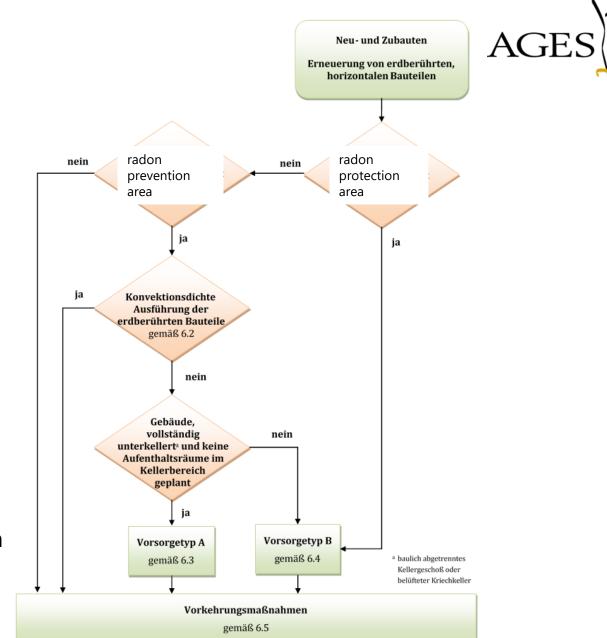
- Characterisation of areas with no or small number of measurements possible
- 🦰 Takes into account
 - geology
 - building factors reflecting geogenic radon potential
 - spatial correlations more homogenic classification possible
- Standard house could be adapted to specific situations
- Predicition of Radon concentration for specific house type for different units (grid, administrative) possible

Graded approach

- Political discussion, not mainly scientifc; involvement of regional authorities & stakeholders necessary
- 🦰 Radon measurements at general workplaces needs to be managable; priorisation necessary
- Radon preventive measures very efficient for radon protection should be done comprehensive
- Effective radon protection in Austria implemented with graded approach and 3 classes:
 - Radon protection areas
 - Predicted radon potential of municipality is above 300 Bq/m³
 - Measurements in workplaces (groundfloor & basement) mandatory
 - Preventive measures for new buildings mandatory
 - Radon prevention areas
 - Predicted radon potential of district is above 150 Bq/m³
 - Preventive measures for new buildings mandatory
 - Areas with no specific measures necessary (very low radon potential)



Radon protection areas, Radon prevention areas



Radon areas in Austria

Consequences

- 🦰 Radon at general workplaces:
 - 104 municipalities in radon protection area
 - about 20,000 workplaces
 - Mandatory measurements in workplaces in groundfloor (if no exemption) – 6 months passive measurements
 - about 20 % expected to be > RL
 - about 80-90 % possible to remediate < RL
- 🦰 Radon preventive measures:
 - New Austrian standard, ÖNORM S 5280-3 (15.7.2021) – graded approach depending on radon areas

Communication – List of municipalities in Radon Protection Ordinance, Annex 1

BUNDESGESETZBLATT FÜR DIE REPUBLIK ÖSTERREICH

Jahrgang 2020	Ausgegeben am 9. November 2020	Teil I	
470. Verordnung:	Radonschutzverordnung – RnV		
	[CELEX-Nr.: 32013L0059]		

B. Als Radonvorsorgegebiete festgelegte Gemeinden:

Burgenland:

Alle Gemeinden mit Ausnahme der Gemeinden in den Bezirken Güssing, Jennersdorf, Neusiedl am See und Oberwart.

Kärnten:

Alle Gemeinden.

Niederösterreich:

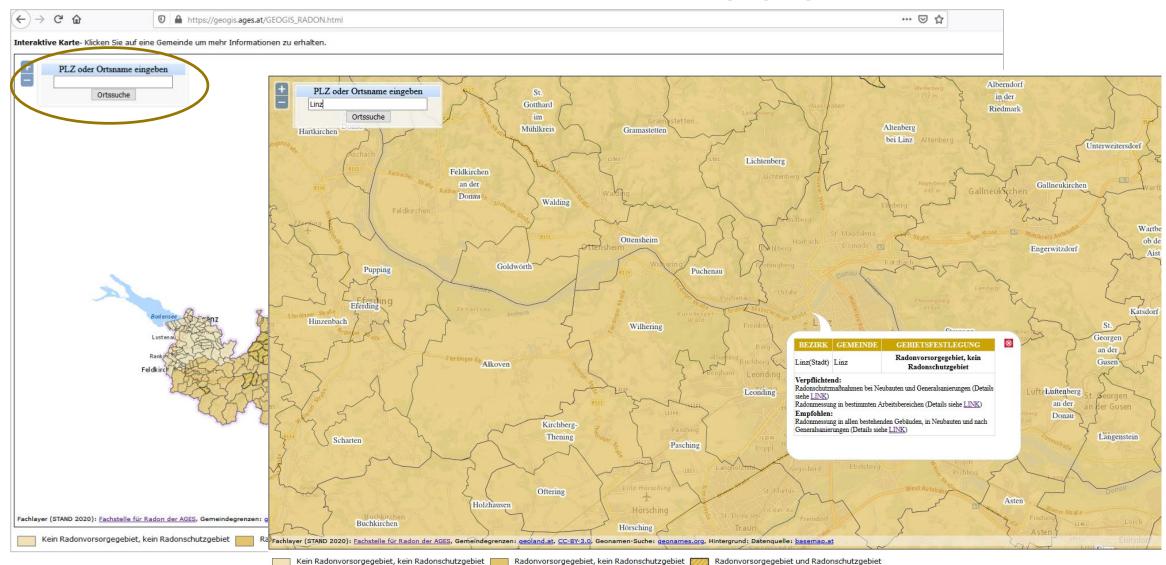
Alle Gemeinden mit Ausnahme der Gemeinden im Bezirk Bruck an der Leitha.

Oberösterreich:

Alle Gemeinden mit Ausnahme der Gemeinden im Bezirk Ried im Innkreis.

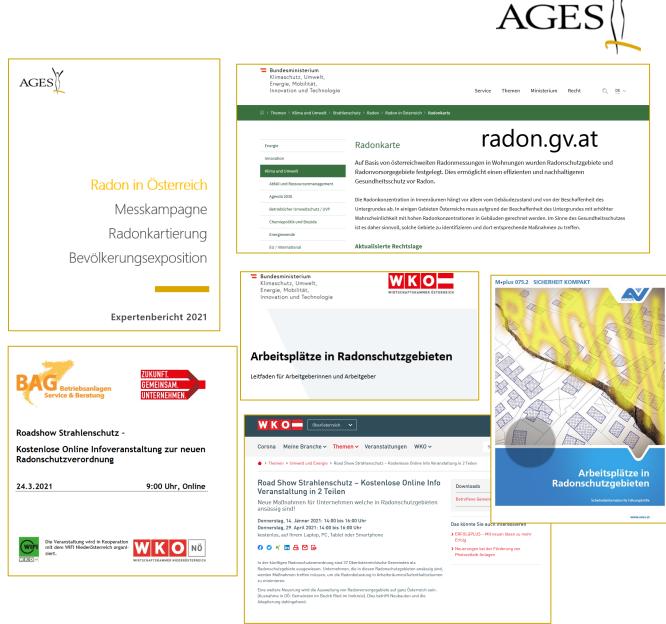
Salzburg:

Alle Gemeinden.


A. Als Radonschutzgebiete festgelegte Gemeinden:

Gemeindename	Gemeinde- kennziffer		
Kärnten:			
Mühldorf	20624		
Obervellach	20627		
Reißeck	20644		
Niederösterreich:	1		
Altmelon	32519		
Amaliendorf-Aalfang	30902		
Arbesbach	32502		

Communication – Interactive map


https://geogis.ages.at/GEOGIS_RADON.html

Communication - Activities

- Report for experts & short version for general public (not published yet)
- Information on websites (AGES, BMK, regional authorities)
- "Roadshows" for employers & co (with regional economic chambers, regional authorities)
- Folders, information campaigns (together with economic chamber, AUVA, regional authorities)
- Presentation of radon map/delineation of radon areas within different stakeholder

groups

Conclusions

Delineation of Radon Areas – a lot to take into account

- Should be done in the scientifically best way for the specific situation of data/radon potential/purpose of country
- Map/delineation should be evaluated and adapted regularly
- Not only scientific topic, but also political/economic/etc.
- Many different factors can/need to be taken into account
- Several stakeholders interested/needs to be involved (not always easy process) clear and open communication good, but can take time
- Good communication of radon areas and necessary measures necessary (employers, building industry, regional & local authorities, population, etc.) – involve trusted/accepted institutions (e.g. labour safety organisation, economic chamber, etc.)
- Measurements and measures recommended also in areas, which are not delineated as radon areas important message/communication!

Dr. Valeria Gruber Senior Expert

AGES – Austrian Agency for Health & Food Safety

Wieningerstraße 8 4020 Linz, Austria T +43 (0) 50 555-41906

valeria.gruber@ages.at www.ages.at