# Utilization of integral ventilation rate measurement in practice

K. NAVRATILOVA ROVENSKA, I. FOJTIKOVA,. K. JILEK, A.FRONKA, J. HRADECKY, J. LENK, O. PARIZEK, M. SESTAK SURO – NATIONAL RADIATION PROTECTION INSTITUTE CZECH REPUBLIC

#### Motivation

- The air exchange rate (ACH) between indoor and outdoor air is the key physical process affecting among others also behavior of all types of aerosol and gaseous contaminants, including radon /thoron gas and their decay products in buildings and mediates their transport from the outside air in to interiors of buildings.
- Air exchange rate is air flow rate through the building (house) normalized by its volume.
- Objectification of results of radon measurement to the minimum hygienic air exchange rate (0.3 1/h).
- Tool of the radon diagnostics for identification radon pathways and radon entry rate.

### Theoretical background

- Perfluorocarbon tracer (PFT) technique allows calculation of average air exchange rate and interzonal airflows in multizonal buildings.
- Number of compartments equals to number of tracer gases used. SURO is capable to measure with 7 different tracer gases.
- Tracer gas *i* (Ci) is constantly injected into the compartment (i.e. room (s) or storey) with defined and well know entry rate driven just by diffusion.
- Tracer gas is absorbed in the detection tubes filled with proper sorbent.
- Gas chromatograph GS Agilent equipped with a proper chromatographic column to distinguish mixture of used tracer gases and electron capture (EC) and flame ionization (FI) detector is used as the evaluation unit. As a carrier gas we use helium.

In principle Dietz PFT multi- zonal approach based on continuous constant injection of a tracer gas(es) and its(their) long term diffusion sampling was adopted.

$$\frac{dC_i}{dt} Vi = \mathbf{R}\mathbf{s}_i - \sum_{j=1}^{N+1} (R_{ji} C_i) + \sum_{j=1}^{N+1} (R_{ij} C_j)$$
(1)

$$0 = \mathbf{R}\mathbf{s}_{i} - \sum_{j=1}^{N+1} (\hat{\mathbf{R}}_{ji} \, \hat{\mathbf{C}}_{i}) + \sum_{j=1}^{N+1} (\hat{\mathbf{R}}_{ij} \, \hat{\mathbf{C}}_{j})$$
(2)

$$R_{Ii} = R_{Ei} - \sum_{j=1}^{N} (R_{ij} - R_{ji})$$
(3)

Eq.(1) represents mass balance equation for a some type used tracer gas in the i-the zone inside a investigated building (house) divided into N- zones. When N+1 zone is outdoor air.

Eq. (2) represents steady state situation within measured time T

Eq (3) represents analogy of the 1th Kirhofs law for airflows in a one zone (el. node = zone)

**Rs**: means known average and constant tracer gas entry rate into i-th zone in (mg/h)

 $R_{ij}$ ,  $\hat{R}_{ij}$  means air flow and average air flow, respectively from zone j-th into zone i-th in (m<sup>3</sup>/h)

 $R_{ji}$ ,  $\hat{R}_{ji}$  means air flow and average air flow, respectively from zone i-th into zone j-th in (m<sup>3</sup>/h)

 $C_i$ ,  $\hat{C}_i$  means mass concentration and an average mass concentration, respectively of the tracer gas in the i-th zone in (mg/m<sup>3</sup>)

 $C_j$ ,  $\hat{C}_j$  means mass concentration and an average mass concentration, respectively of the same tracer gas in the j-th zone in (mg/m<sup>3</sup>)

 $R_{Ei}$ ,  $R_{i}$  means air infiltration and (exfiltration), respectively to (from) the i- th zone in (m<sup>3</sup>/h)

Vi means effective mixing volume of i-th zone in (m<sup>3</sup>).

#### 2 ZONES - AIR EXCHANGE RATE (ACH) CALCULATION

Zonet R<sub>E1</sub> C C 11,21 C C 12.22 Zone 2 R E2 H;, ٧2 REI exfiltration air flow from i - th zone  $(m^3/h$ Vi volume i- th zone (m<sup>3</sup>) Ri infiltration of outdoor air flow into i-th zone Cij i-th tracer gas concentration in j-th zone  $(mg/m^3)$ R<sub>si</sub> tracer source in i- th zone (mg/h)R<sub>ij</sub> air flow from i- th zone to j-th  $(m^3/h)$ 

| $ACH = \frac{R_{E1}}{V_1}$ | $+ \frac{R_{E2}}{+ V_2}$                                                                                                    |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Infiltrations:             | $R_{11} = R_{E1} + R_{12} - R_{21}$                                                                                         |
|                            | $R_{12} = R_{E2} + R_{21} - R_{12}$                                                                                         |
| Zone 1                     |                                                                                                                             |
|                            | $R_{21}C_{12} - R_{12}C_{11} - R_{E1}C_{11} = -R_{s1}$                                                                      |
|                            | $R_{21}C_{22} - R_{12}C_{21} - R_{E1}C_{21} = 0$                                                                            |
| Zone 2                     |                                                                                                                             |
|                            | $R_{12}C_{11} - R_{21}C_{12} - R_{22}C_{12} = 0$                                                                            |
|                            | $R_{12}C_{21} - R_{21}C_{22} - R_{E2}C_{22} = -Rs2$                                                                         |
| )                          |                                                                                                                             |
| $m^3/h$                    | $\mathbf{R}_{21} = (\mathbf{R}_{s1} \mathbf{C}_{21}) / (\mathbf{C}_{11} \mathbf{C}_{22} - \mathbf{C}_{12} \mathbf{C}_{21})$ |
| g/m <sup>3</sup> )         | $R_{12} = (R_{s2}C_{12})/(C_{11}C_{22} - C_{12}C_{21})$                                                                     |
| o, ,                       | $R_{E1} = R_{21}(C_{11/(21)} - R_{12})$                                                                                     |
|                            | $K_{E2} = K12(C11/C12) - R_{21}$                                                                                            |









### Capabilities of the system

- Dynamic measuring range of ACH (0.05 3) h<sup>-1</sup>
- Exposition duration from one day up to approx. 3 months
- Measurement in occupied buildings (apartments, schools, multi-storey family houses etc.)
- Assessment of inter-zonal flows between 7 different zonescompartments (storey, rooms)
- Measurement and estimation of ACH with overall uncertainty 15 % (K= 1) having in mind:
  - instrumentation errors (due to calibration, influence of ambient conditions upon source emission rate and uptake rate of TD detection tubes, actual size of mixing volume of measurement zone etc.)
  - model errors (homogeneity of the mixture tracer gas-air in the zone, transient changes of measured tracer gas concentration can be neglected within whole exposure).

### QA/QC

- Interlaboratory comparison (up to 10%) between the National Brookhaven Lab. NY (USA) and SURO carried out in 15 different houses located in the CR comprising apartments 3+1, 5 multi-storey family houses)
- State Office for Nuclear Safety has certified the measurement protocol for assessment of average ACH in buildings under reference number: SÚJB/RCHK/4581/2017
- SURO periodically runs tests in the big climatic radon chamber allowing independently adjust the ACH within wide range of ACH
- Average ACH can be compared to the average value obtained from the continuous measurement of ACH based on use of N<sub>2</sub>O and SF<sub>6</sub> as tracers.

#### Case study 1

- Family house, 2 storey building build in 2010, single storey extension added in 2013.
- 1 Week measurement done by electret detectors showed radon concentration of 900 Bq/m<sup>3</sup> in the large kitchen+living room located in the 1<sup>st</sup> floor and 40 Bq/m<sup>3</sup> in the bedroom located in the building extension. Heating season, building occupied.
- Radon diagnostics was done in unoccupied heated building. Doors to the extension were closed for the whole period.
- Grab sampling from suspicious places confirmed high radon concentration in cracks in the technical room and living room (~7 kBq/m<sup>3</sup>).
- Grab sampling taken from space between external wall and heat cladding showed higher radon conc. on the building extension (~14 kBq/m<sup>3</sup>).

10 days radon concentration average, electret detectors, heated unoccupied building

| Room                | Floor        | Radon conc. (Bq.m <sup>-3</sup> ) | Ambient dose eq.<br>rate (mikroSv.h <sup>-1</sup> ) |
|---------------------|--------------|-----------------------------------|-----------------------------------------------------|
| Living room         | 1. NP        | 795                               | 0,08                                                |
| Bedroom 1.02 -      | 1. NP        | 1112                              | 0,07                                                |
| extension           |              |                                   |                                                     |
| Bedroom kids 1.03 – | 1. NP        | 1344                              | 0,09                                                |
| extension           |              |                                   |                                                     |
| Technical room      | 1. NP        | 710                               | 0,07                                                |
| Bedroom 2.02        | <b>2. NP</b> | 840                               | 0,07                                                |











Living room+kitchen

#### ACH measurement

- 3 compartments compartment 1: 2<sup>nd</sup> floor, compartment 2: extension, compartment 3: 1<sup>st</sup> floor living room, kitchen, technical room
- Compartment 1 2<sup>nd</sup> floor
  - Low average air exchange rate 0.14 1/h
- Compartment 2 extension
  - Low average air exchange rate 0.04 1/h
  - Main air flow pathway to compartment 3 living room etc., 20 times stronger than to compartment 1
- Compartment  $3 1^{st}$  floor living room etc.
  - Surprisingly large average air exchange rate 0.42 1/h
  - 2 time stronger air flow to compartment 1 compared to compartment 2

#### Results

- Radon concentration in occupied building will be much lower compared to measured values (~1200 Bq/m<sup>3</sup> in the extension recalculated to 0.3 1/h -> 160 Bq/m<sup>3</sup>).
- 3 radon pathways identified
  - Cracks in the contact floor of the 1<sup>st</sup> floor
  - Joint between the external wall and heat cladding which continues bellow the foundation slab
  - Joint between the walls of original and new parts of the building.
- Main transport route for radon to 2<sup>nd</sup> floor is the staircase.

#### Case study 2

- Large 4 storey administrative building
- Built during 2<sup>nd</sup> WW originally as a block of flats
- Reconstructed few years ago
- Cellar with gym, technical rooms
- Lid covering entrance to small technical tunnel to somewhere outside the building is located in the gym
- 4 floors of offices, meeting rooms
- Central staircase connecting all of the floors, lift

|                            | Heating season<br>Avg. radon conc. Bq/m <sup>3</sup> | Non-heating season<br>Avg. radon conc. Bq/m <sup>3</sup> |  |
|----------------------------|------------------------------------------------------|----------------------------------------------------------|--|
| Space under stairs, cellar | 10838                                                |                                                          |  |
| Room 004, cellar           | 92                                                   | 1225                                                     |  |
| Lift engine room, cellar   | 95                                                   | 48                                                       |  |
| Room 005, cellar           | 7192                                                 | 8906                                                     |  |
| Room 014, cellar           | 781                                                  | 1547                                                     |  |
| Room 101, 1.NP             | 317                                                  | 279                                                      |  |
| Room 102, 1. NP            | 582                                                  | 400                                                      |  |
| Room 201, 2. NP            | 441                                                  | 276                                                      |  |
| Room 203, 2. NP            | 119                                                  | 770                                                      |  |
| Room 301, 3. NP            | 595                                                  | 211                                                      |  |
| Room 303, 3. NP            | 1231                                                 | 771                                                      |  |
| Room 401, 4. NP            | 1019                                                 | 683                                                      |  |
| Room 403, 4. NP            | 972                                                  | 723                                                      |  |

#### ACH measurement

- 5 compartments per each of the floor
- **R** exfiltration air flow rate, **n** average air exchange rate

| CompartmentR (m³/h)n (h⁻¹)R (m³/h)n (h⁻¹)1. PP / cellar3260.734130.921. NP560.121000.212. NP840.171190.243. NP940.20460.10 |                | Non-heat | ing season | Heating season         |         |
|----------------------------------------------------------------------------------------------------------------------------|----------------|----------|------------|------------------------|---------|
| 1. PP / cellar3260.734130.921. NP560.121000.212. NP840.171190.243. NP940.20460.10                                          | Compartment    | R (m³/h) | n (h-1)    | <mark>R (m³/</mark> h) | n (h⁻¹) |
| 1. NP560.121000.212. NP840.171190.243. NP940.20460.10                                                                      | 1. PP / cellar | 326      | 0.73       | ( 413 )                | 0.92    |
| 2. NP 84 0.17 119 0.24   3. NP 94 0.20 46 0.10                                                                             | 1. NP          | 56       | 0.12       | 100                    | 0.21    |
| <b>3. NP</b> 94 0.20 46 0.10                                                                                               | 2. NP          | 84       | 0.17       | 119                    | 0.24    |
|                                                                                                                            | 3. NP          | 94       | 0.20       | 46                     | 0.10    |
| <b>4. NP</b> 107 0.26 (150) 0.36                                                                                           | 4. NP          | 107      | 0.26       | ( 150 )                | 0.36    |

- Air exchange rate is higher during heating season in the 4<sup>th</sup> floor
- Radon ingress from the cellar is also higher
- Staircase was identified as a main radon pathway in this case

## What can be average exchange rate used for?

- Air exchange rate is air flow rate through the building (house) normalized by its volume.
- Objectification of results of radon measurement to the minimum hygienic air exchange rate (0.3 1/h).
- Tool of the radon diagnostics for identification radon pathways and radon entry rate.
- Assessment of exfiltration-infiltration from the outside improvement in dose assessment in case of plume contamination.