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Cinelli et al (2019): European atlas of natural radiation

Challenges in Rn mapping
• Very complex system
• Interplay of a variety of factors
• Observations does not necessarily reflect long-term 

mean due to temporal variability, e.g. effect of weather 
on  short-term measurements of Rn -> noise

• Individual extreme values (caused by weather, issues 
during sampling etc.) can have a significant effect on 
predictions for a large area

• ML is able to consider many driving factors (or proxies) as 
predictors

• ML suitable for modelling complex non-linear processes

Why ML - Radon is a complex issue!
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• More and more data available
• Satellite missions (NASA, ESA -> copernicus)
• Open access to data sets and maps on national/continental/global scale
• Citizen science
→ A lot of suitable data for explaining geogenic and indoor Rn variability! 

Why ML - Data everywhere

https://www.esa.int/Space_in_Member_States/Germany/Die_Copernicus-Dienste

https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties

Building height -> 
number of floor levels

https://land.copernicus.eu/local/urban-atlas/building-height-2012?tab=mapview

https://map.safecast.org/?y=50.0963&x=14.4014&z=14&l=1&m=0

Safecast-> radioactivity monitoring
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• Component of AI -> extract knowledge from large 
data sets 

• Non-parametric
• Data-driven
• Supervised vs. unsupervised ML

What is Machine learning?

ML

Supervised
Learning

Regression Classification

Unsupervised
learning

Cluster analysis

-> Rn concentration -> Exceedance
probability

www.en.wikipedia.org

AI vs. Machine learning

Examples: 
• Image and speech recognition
• predictive marketing (Amazon, 

Google)
• autonomous driving 
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How does ML work?

Example: How toddlers learn distinguishing 
animals (-> classification)
• Assign attributes/properties (colour, size, 

shape etc.) to terms/label
• Relationship between attributes and 

terms created
• → test data required that was not used 

for training to test generalizability
• Algorithms highly flexible -> risk of 

overfitting (learning of patterns in training 
samples)

• Reducing the risk of misinterpretation of 
relationships: direction of view, relative 
position

Training Test

© Usborne;  https://www.amazon.de/1000-Tiere-Jessica-
Greenwell/dp/1782321179
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Algorithms: Example Random Forest

https://www.guru99.com/r-decision-trees.html

Regression tree: 
Example survival probability sinking of Titanic 

ja nein

ja nein

ja nein

ja nein

ja nein

ja nein

ja
nein

Target variable: died/ survived
4 properties/predictors: sex, age, passenger class, fare

https://de.wikipedia.org/wiki/RMS_Titanic

• Combination of many (e.g. n=500) 
decorrelated decision trees

• Every decision tree is build only with a 
fraction of available data (e.g. 80 %) 

• At every split only a subset of available
predictors (e.g. 3 out of 9) is evaluated and 
used for splitting the data

• Optimization criteria: reduction of prediction
error

-> grouping of sample data into smaller
statistically more similiar subsets



Machine Learning and Radon Mapping Page 10

4. Conclusion & 
outlook

2. Machine Learning
• What is it?
• How does it work?

3. ML model building
• Predictor selection
• Tuning
• Interpretation

1. Motivation
• Complex system!
• Data everywhere



Machine Learning and Radon Mapping Page 11

Model building – training and testing via cross-validation

Data 
splitting

Data

Training Training Training Test

Training Training Test Training

Training Test Training Training

Test Training Training Training

Repeated
x times

Training

Training

Training

Training

Training Training Training TrainingTest

Problem: Random splitting of data does not 
guarantee independence of training and test data
(i.i.d. -> independent and identically distributed)
→ Spatial auto-correlation of samples (that´s why

geostatistics can be used for mapping)
Solution: data splitting with spatial blocks larger 
than correlation length

Fold # 1 2 3 54

More details: 
• Roberts et al (2017), Ecography.
• Meyer et al. (2019), Ecological Modelling.
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Model building – predictor selection

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

• Many candidate predictors, sometimes
>100

• Not all of them improve model
performance

• Computational expensive
→ Select only relevant predictors

• Principle of parsimony
• Avoid overfitting

• Predictor selection -> goal: finding
optimal combination of predictors
(criteria: test performance)

e.g., viewing direction

Different ways of predictor selection, e.g. 
forward selection: 
1. testing of every two predictor combination
2. Select best 2-predictor-combination
3. test all not-selected predictors as a third

predictor
4. Select best 3-predictor-combination 
5. Continue until adding predictors does not 

improve test performance
implementation for R in package CAST (Meyer, 2021)
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Model building – tuning

Tuning of hyperparameters:
• Hyperparameters are e.g.: minimum 

number of measurements in leaves, 
number of predictors evaluated at 
every split

• Cannot be directly estimated from 
the data

• Importance dependent on algorithm: 
for random forest small impact, for 
deep learning large impact

• Testing different combinations of 
hyperparameters
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• After predictor selection and hyperparameter tuning the final model can be fitted using all available observational 
data

• For spatial prediction (-> mapping <-) the final model is computed for every grid cell (for random forest 1000 
regression trees are computed and averaged), i.e. every grid cell needs information of all informative predictors

→ upscaling/downscaling if cell resolution of predictors is higher/ lower
→ rasterizing of polygon data (e.g. for geology): conversion of vector data (polygons) to raster data
→ A single geological unit needs to be assigned to a grid cell; dominant geology or geology at cell centre → this is a 
critical decision!

• For large-scale and/or high-resolution mapping working memory intensive 
->  tiling required, i.e. dividing the mapping area in smaller units, e.g. for Germany 1km grid cells ~250 tiles 
->  then, jigsaw puzzle („merging“) of tiles to the final map 

Model building – final model & mapping

Upscaling 500 m -> 1000 m Rasterizing geology Faults -> density
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Model building – interpretation

https://www.castsoftware.com/blog/cracking-open-the-black-box-of-it-for-ceos

1. Variable importance: relative importance of
selected predictors in the model

2. Partial dependence plots: quantitative 
understanding of predictor-response 
relationship

3. Spatial dependence plots: mapping of partial 
dependence

1) 2) 3)

Petermann et al (2021), Sci. Total Environ. 754; Petermann & Bossew (2021), Sci. Total Environ. 780  
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• Which algorithms are the best? 
• …it depends…
• especially ensemble based algorithms (such as random forest) suitable for noisy data

(e.g., Rn in soil)
• deep learning used for many industry applications

• What software to use? 
• e.g., R, python, ArcGIS (?)

• How long does it take to build a model?
• dependent on amount of observational data, predictor data, algorithm, hyperparameter

setting
• most time required for data collection and pre-processing

• What computational power is required?
• many cores beneficial -> parallel computing
• state-of-the-art desktop computer sufficient for (most) regional to national mapping with

<10.000 observations and <50 predictors

Model building – some practical issues
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Conclusion & outlook

• ML powerful state-of-the-art techniques for spatial mapping
• Data pre-processing and implementation requires some coding, not in a ready-to-use way 

included in GIS software
• Recent literature shows that ML outperforms geostatistical models in many cases-> better 

predictive power
• ML relies on the existence and quality of predictor data
• Prediction is solely based on the site characteristics and average observations for these set of 

characteristics
→ i.e. measurements nearby are not necessarily considered (contrast to geostatistics) 
→ ML gives less weight to individual measurements
→ Information that is not in the predictors (i.e. outcrop of an unmapped small geological unit) 

won´t be in the map  
→ Possible solution hybrid approaches: regression kriging, i.e. 

1) machine learning regression model
2) Geostatistical interpolation of residuals
• If we are lucky, the model improves, but it can also reintroduce the noise that we 

wanted to avoid 
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Thank you! 

Eric Petermann
Federal Office for Radiation Protection (BfS), Berlin, Germany
epetermann@bfs.de


