

5 YEARS OF NATIONAL RADON ACTION PLAN IN POLAND. FIRST CONCLUSIONS AND NEED FOR CHANGES

D.Grządziel*, K.Kozak, J.Mazur, J. Lukas, M. Mroczek

Laboratory of Radiometric Expertise,

Institute of Nuclear Physics PAN

**17th INTERNATIONAL WORKSHOP
GARRM**

(on the GEOLOGICAL ASPECTS OF RADON RISK MAPPING)

We all know how it all started

COUNCIL DIRECTIVE 2013/59/EURATOM
of 5 December 2013

laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom

- The directive introduced exposure to radon to the group of indoor exposures resulting from ionizing radiation
- „Statistically significant increase in the risk of developing lung cancer as a result of prolonged exposure to radon indoors at a level of 100 Bq/m³“
- The recommendations for **reference level** for indoor radon concentration - average annual radon concentration 300 Bq/m³ (residential buildings and workplaces)
- Exposure to radon is equivalent to exposure to its progenies
- The recommendations should be implemented in national regulations by 6 February 2018. Each Member State is obliged to prepare and implement a national action plan

Poland's first strike

amendment of the Atomic Law Act, June 2019

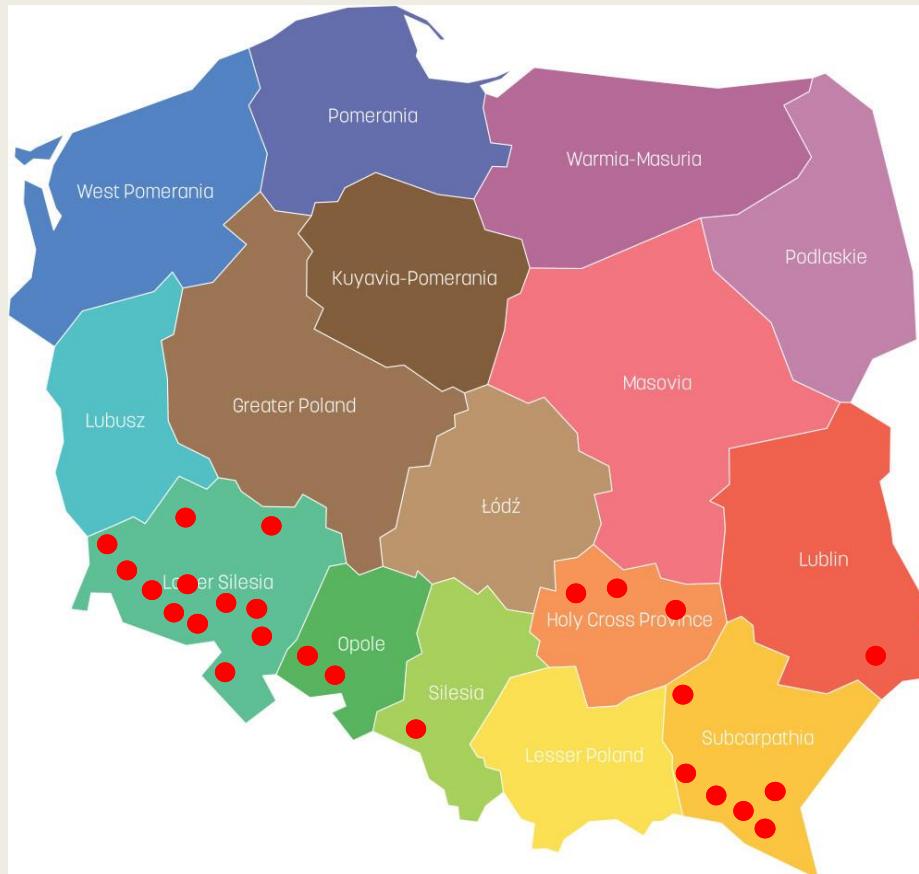
The attack of the hussars near Chocim in 1621
Stanisław Batowski-Kaczor

- Art. 23b: introduction of reference level in workplaces and in rooms intended for human occupation - 300 Bq/m³
- - Art. 23c: managers of relevant units ensure:
 - *measurement of radon concentration or concentration of potential alpha energy of short-lived radon decay products*
 - *optimization of exposure of employees working in these workplaces and inform them*
 - *take actions to ensure reduction of employee exposure to radon*

amendment of the Atomic Law Act

- - Art. 23d: Radon measurements in residential buildings to determine the average annual radon concentration "...at the request of the purchaser or tenant of such a building..." - **carried out by accredited laboratories** - there is **no** such provision in the case of workplaces!
- - Art. 23e: **Chief Sanitary Inspector** - conducting activities aimed at identifying radon-prone areas
State Sanitary Inspectorate - advice and information on radon exposure and related risks, as well as radon measurements and measures to reduce radon presence in homes
- - Art. 23g: The President of the National Atomic Energy Agency and the Chief Sanitary Inspector:
 - *organize campaigns promoting the use of measures aimed at preventing the penetration of radon into new buildings*
 - *conduct information, educational and training activities on available measures to prevent the penetration of radon into new buildings*
 - *monitor the use of measures aimed at preventing the penetration of radon into new buildings*

Regulation of the Minister of Health, June 2020


on areas where the average annual radioactive concentration of radon in the air inside rooms in a significant number of buildings may exceed the reference level

**27 (314) counties
in 6 (16) voivodeships**

U-238 > 4 g/t

Rn in water > 100 Bq/l

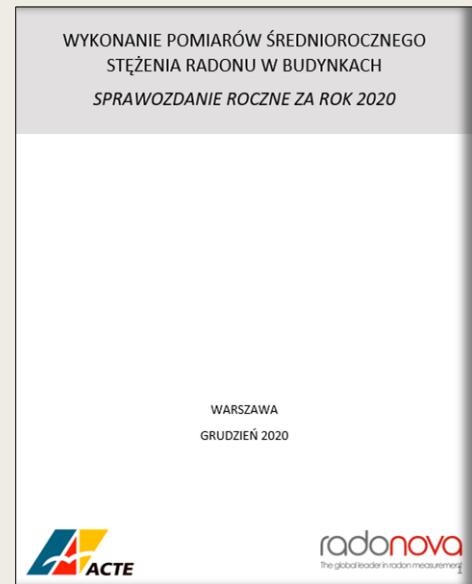
- In these counties, radon concentration measurements are mandatory in **ground-floor workplaces**
- Measurements are mandatory in **underground workplaces** throughout Poland

The fellowship of the ring

Radon

National Action Plan, January 2021

in case of long-term threats resulting from exposure to radon in buildings intended for human residence and in workplaces


The main objective of the plan is to reduce the risk of negative impact of indoor radon on human health. The main objective is achieved by implementing specific objectives:

- 1 - Indication of areas where the average annual concentration of radon in indoor air in a significant number of buildings may exceed the reference level of 300 Bq/m³ - in these areas, actions are taken under the Act
- 2 – Protecting employees from the risk of adverse health effects due to exposure to environmental radon
- 3 – Reducing the risk of lung cancer among smokers due to their exposure to environmental radon
- 4 – Assessing exposure to radon – measurements: planning, determining the optimal method, performing and collecting results
- 5 – Promoting actions to reduce the risk of adverse health effects due to human exposure to environmental radon
- 6 – Determining the impact of environmental radon on public health
- 7 – Assessing the national radon plan for its completeness and relevance

National Action Plan

As part of the implementation of the National Radon Action Plan, the following actions were taken:

- 1 – Organizing interlaboratory comparative measurements of radon concentrations in air
- 2 – Organizing measurements of radon concentrations in buildings in the years 2020-2023, aimed at identifying "radon" areas
- 3 – Information, educational and training activities carried out by the relevant state bodies (National Atomic Energy Agency, National Institute of Public Health)
- 4 – A series of training sessions for the State Sanitary Inspection employees organized at the request of the Chief Sanitary Inspectorate

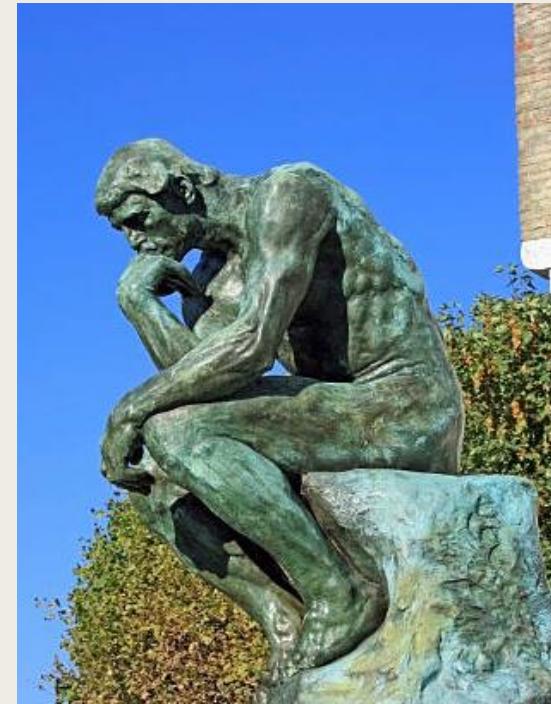
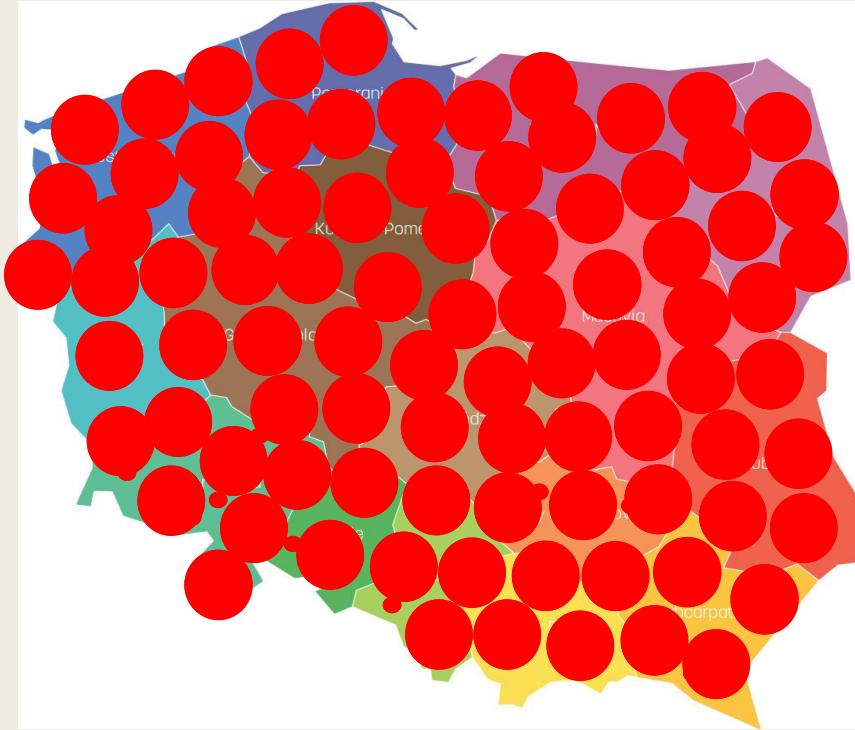
Radon measurements in workplaces

Number of orders completed by laboratories accredited by the
Polish Radon Center in 2021-2024

674

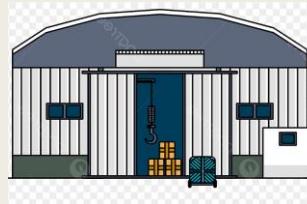
workplaces (including health resorts, mines)

176



schools, kindergartens, nurseries, orphanages

9

private houses


First problems and conclusions

**Expanding the list of counties with mandatory
measurements to the entire country!**

Lack of specification of the measurement methodology

- - no detailed information on how many detectors should be exposed in the rooms, e.g. small office spaces and large warehouse spaces

- - lack of precise definition of what the term **average annual radon concentration** means and how to determine this value basing on shorter measurements (**1 or 3 months**)
- - lack of precise definition of which rooms the measurement should be taken in, which room will be classified as a workplace. Whether it is **permanent work** (over 4 hours per day) or **temporary work** (over 2 hours per day) or **any room** in a work building, including kitchen, bathroom, etc.

Problematic effective dose calculations

$$E = 5.57 \cdot 10^{-9} \cdot C_{Rn} \cdot F \cdot k_f \cdot t \text{ [Sv]}$$

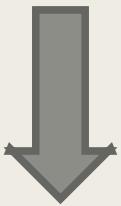
where:

C_{Rn} – radon concentration [Bq/m³]

F - equilibrium factor [-]

t – time of exposure to radon [h]

k_f – conversion factor, which is


1.1 [Sv/(J h/m³)] – for radon in a residential building

1.4 [Sv/(J h/m³)] – for radon in the workplace

taken from ICRP
Publication 65 from 1993
(due to regulation in
Poland)

Dose Conversion Factor

- 5.7 mSv/mJ h/m³ – for indoor workplace
- 3.3 mSv/mJ h/m³ – for mine
- 6.7 mSv/mJ h/m³ – for tourist cave

**4 times
higher!**

**1.1 [Sv/(J h/m³)] – for radon
in a residential building**

**1.4 [Sv/(J h/m³)] – for radon
in the workplace**

Table 5. Dose coefficients applied

Dose coefficients applied per EU MS and the UK (status on January, 2023)	
Country	Dose coefficient
Austria	ICRP137
Belgium	ICRP137
Bulgaria	ICRP137
Croatia	/
Cyprus	ICRP137
Czech Republic	ICRP137
Denmark	ICRP137
Estonia	ICRP137
Finland	ICRP137
France	New order will include ICRP137 and will be applicable in January 2024
Germany	Currently the ICRP65, ICRP137 under discussion
Greece	ICRP137
Hungary	ICRP137
Ireland	ICRP137 under discussion
Italy	ICRP137
Latvia	/
Lithuania	ICRP137
Luxembourg	ICRP137
Malta	no need to implement due to low radon
Poland	waiting for final decision on which DCF will be used
Portugal	currently ICRP65, ICRP137 under discussion
Romania	ICRP137
Slovakia	ICRP137
Slovenia	ICRP137
Spain	Dose coefficients based on ICRP 103 recommendations will be applied.
Sweden	ICRP137 not formally implemented, but reference to ICRP115 and 103.
The Netherlands	currently the ICRP65, ICRP137 under discussion
UK	ICRP65

Radon and Dose issue

■ In Atomic Law Act in Art. 23c

If in workplaces the exposure of employees to receiving an effective dose is greater than 1 mSv per year, managers of units take actions to ensure reduction of employee exposure to radon

$$E = 5,57 \cdot 10^{-9} [J \cdot s] \cdot C_{Rn} \left[\frac{Bq}{m^3} \right] \cdot F \cdot k_f \left[\frac{Sv \cdot m^3}{J \cdot h} \right] \cdot t [h] \text{ [Sv]}$$

$$C_{Rn} = 300 \text{ Bq/m}^3$$

$$F = 0.4$$

$$t = 2000 \text{ h}$$

$$k_f = 1.4 \text{ Sv/J h/m}^3$$

$$E = 5.57 \cdot 10^{-9} \cdot 300 \cdot 0.4 \cdot 1.4 \cdot 2000 = 1.9 \text{ mSv}$$

much higher value
than the
permissible dose

What to do if the radon reference level is exceeded?

Specialists from the **Polish Radon Center**,
commissioned by the **Chief Sanitary**

Inspectorate, have developed a procedure for such cases:

- repeat longer (3-12 months) measurement using track detectors
- calculation of the annual effective dose for the employee based on the time of work in a given room
- measurements with an active device to identify the paths of radon penetration into the building
- indication of actions resulting in the removal of excessive radon concentration from the room/building, followed by control measurements

MAGAZIN
OLEP

To sum up - problems to solve

Measurement techniques for various specific building types

- Clarifying who can perform measurements in workplaces
- Updating and expanding the list of counties with mandatory measurements
- Clarifying the measurement period (we propose from September 15th to April 15th) to better estimate the average annual radon concentration
- Addressing radon doses and conversion factor values
- Introducing the concept of an radon action level, e.g., 1000 Bq/m³, for workplaces
- Unifying procedures and recommendations, e.g., regarding situations where radon concentrations exceed limits or RAC is differ in different rooms
- Even closer cooperation between authorities and experts

A guide to good practices in measuring radon concentrations in buildings, public facilities, and workplaces

**Poradnik dobrych praktyk w pomiarach stężeń radonu
w budynkach, obiektach użyteczności publicznej
i w miejscach pracy**

Krzysztof Kozak¹, Jadwiga Mazur¹, Michał Bonczyk², Katarzyna Wołoszczuk³,
Małgorzata Wysocka², Dominik Grządziel¹, Jerzy Olszewski⁴, Jakub Lukas¹

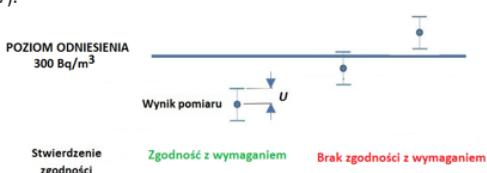
¹ *Instytut Fizyki Jądrowej PAN (IFJ PAN), Kraków*

² *Główny Instytut Górnictwa – Państwowy Instytut Badawczy (GIG-PIB), Katowice*

³ *Centralne Laboratorium Ochrony Radiologicznej (CLOR), Warszawa*

⁴ *Instytut Medycyny Pracy (IMP), Łódź*

4. Dobre praktyki pomiarowe


4.1. Procedura pomiarów stężeń radonu

Pomiar stężenia radonu wewnętrz budynków składa się z następujących etapów:

- Kontakt Klienta z laboratorium - wspólnie opracowanie strategii pomiarów: rodzaj budynku, liczba pomieszczeń i ich przeznaczenie, powierzchnia pomieszczenia, liczba koniecznych detektorów, miejsca ekspozycji.
- Wysyłka detektorów przez laboratorium - wraz z instrukcją przeprowadzenia pomiarów, arkuszem ekspozycji detektorów, ankietą dotyczącą budynku.
- Ekspozycja detektorów przez Klienta - rozmieszczenie detektorów zgodnie z uzgodnioną strategią.
- Zwrot detektorów do laboratorium - zgodnie z instrukcją szczelnego zapakowania detektorów (torebka foliowa strunowa, pakowanie próżniowe, itp.).
- Odczyt detektorów w laboratorium - rejestracja przyjęcia detektorów w laboratorium, odpowiedni sposób przechowywania detektorów przed odczytem, archiwizacja detektorów, archiwizacja danych źródłowych i wyników.
- Sprawozdanie z badań dla Klienta - zawierające: wyniki pomiarów wraz z niepewnością, stwierdzenie zgodności lub jej braku w przypadku przekroczenia poziomu odniesienia tj. 300 Bq/m^3 dla średniorocznego stężenia radonu (Art. 23b Ustawy Prawo atomowe). Wyniki należy podawać zawsze z całkowitą rozszerzoną niepewnością pomiarową U oszacowaną dla poziomu ufności $p=95\%$ (współczynnik rozszerzenia $k=2$).

UWAGI:

- Przy stwierdzeniu zgodności z wymaganiem przyjęto zasadę tzw. binarnego stwierdzania zgodności z zastosowaniem pasma ochronnego o szerokości równej wyznaczonej rozszerzonej niepewności U stężenia radonu (na podstawie ILAC-G8:09/2019, pkt. 4.2.2). Oznacza to, że wynik powiększa się o niepewność rozszerzoną ($k=2$) i porównuje się z wymaganiem lub specyfikacją podanymi w przepisach prawa i stwierdza się czy wynik wskazuje lub nie wskazuje na możliwość przekroczenia poziomu odniesienia dla średniorocznego stężenia radonu, tj. 300 Bq/m^3 podanego w art. 23b Ustawy Prawo atomowe (Dz.U. z 2024 poz. 1277).

PRZYKŁAD:

wynik + niepewność < 300 Bq/m^3 → nie wskazuje na możliwość przekroczenia poziomu odniesienia dla średniorocznego stężenia radonu

wynik + niepewność $\geq 300 \text{ Bq/m}^3$ → wskazuje na możliwość przekroczenia poziomu odniesienia dla średniorocznego stężenia radonu

- Celem minimalizacji ryzyka stwierdzenia przekroczenia dla wyników znajdujących się w tzw. obszarze pasma ochronnego, należy minimalizować niepewność pomiarową.
- W przypadku gdy zmierzone stężenie przekracza 80% wartości poziomu odniesienia (tj. 240 Bq/m^3), należy dostosować metodę pomiarową tak, aby wyznaczona niepewność rozszerzona ($k=2$) nie przekraczała 30% wartości mierzonej.

PRZYKŁAD:

240 ± 70 precyza zadowalająca (niepewność < 30% z 240),

240 ± 100 precyza niezadowalająca (niepewność > 30% z 240).

Sprawozdanie może zawierać dodatkowe informacje np. zalecenia dalszych działań, informacje o terminie następnego pomiaru, wskazanie środków obniżających stężenie radonu.

4.2. Szczegółowe zalecenia dotyczące miejsc pomiarów i ilości detektorów

Zgodnie z zapisami ustawy Prawo atomowe (Dz.U. 2024 poz. 1277, Art. 23c) „*kierownicy jednostek wykonujących działalność, w której występują miejsca pracy:*

1) *zlokalizowane wewnętrz pomieszczeń na poziomie parteru lub piwnicy na terenach, na których średnioroczn stężenie promieniotwórcze radonu w powietrzu w znacznej liczbie budynków może przekroczyć poziom odniesienia, o którym mowa w art. 23b,*

2) *pod ziemią,*

3) *związanego z uzdarnianiem wód podziemnych na terenach, na których średnioroczn stężenie promieniotwórcze radonu w powietrzu w znacznej liczbie budynków może przekroczyć poziom odniesienia, o którym mowa w art. 23b*

– zapewniają w tych miejscach pracy pomiar stężenia radonu lub stężenia energii potencjalnej alfa krótkożywiowych produktów rozpadu radonu”.

W celu optymalizacji liczby detektorów i pomiarów oraz mając na uwadze zasady ochrony radiologicznej sugeruje się wykonywanie pomiarów stężenia radonu w pomieszczeniach pracy, gdzie pracownicy przebywają co najmniej 2 godziny w ciągu doby zgodnie z definicją zawartą w Rozporządzeniu Ministra Pracy i Polityki Socjalnej z dnia 25 września 1997 roku w sprawie ogólnych przepisów bezpieczeństwa i higieny pracy (Dz.U. 2003, nr 169, poz. 1650)

Dla większości typów budynków najwyższe stężenia radonu obserwuje się w okresie jesienno-zimowym i dlatego sugeruje się wykonywanie pomiarów co najmniej 1-miesięcznych w okresie od 15 września do 15 kwietnia. Jednak ustawa Prawo atomowe dopuszcza wykonywanie co najmniej 1-miesięcznych pomiarów w dowolnym okresie roku. Wynik takiego pomiaru wskazuje lub nie wskazuje na możliwość przekroczenia poziomu odniesienia dla średniorocznego stężenia radonu. W celu wyznaczenia wartości średniorocznego stężenia radonu konieczne jest wykonanie 12-miesięcznego pomiaru stężenia radonu.

W czasie pomiaru w badanym pomieszczeniu detektory należy umieszczać:

- co najmniej 20 cm od ściany
- na wysokości oddychania (od ok. 1,3 m do ok. 2,0 m od podłogi)
- w miejscu zapewniającym swobodny przepływ powietrza wokół detektora
- w miejscach niedostępnych dla dzieci i dla zwierząt

Nie umieszczać detektorów:

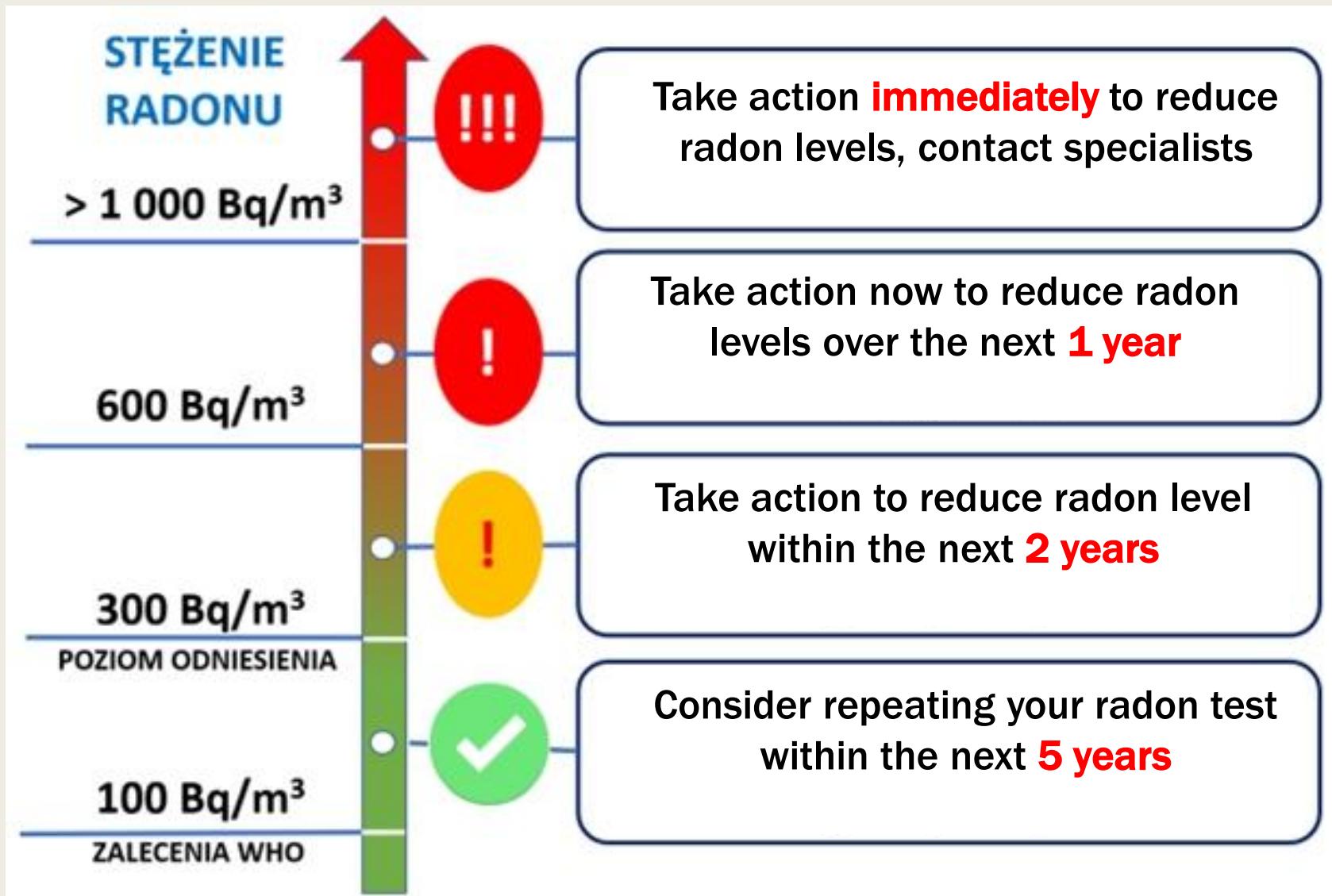
- przy drzwiach i oknach (odległość min. 2 m)
- przy nawiewach grzewczych, wentylacyjnych i klimatyzacyjnych
- w zamkanych szafach, szafkach, szufladach
- w studienkach kanalizacyjnych, przeciwdeszczowych, w zagłębieniach
- w miejscach silnie nasłonecznionych lub narażonych na wysokie temperatury
- przy kominkach, piecach, kaloryferach (odległość min. 2 m)
- przy sprzęcie zasilanym elektrycznie (np. TV, radia, głośniki, transformatory)

- a także o ile to możliwe w kuchniach, w pralniach, w łazienkach (miejsca o dużej wilgotności!)

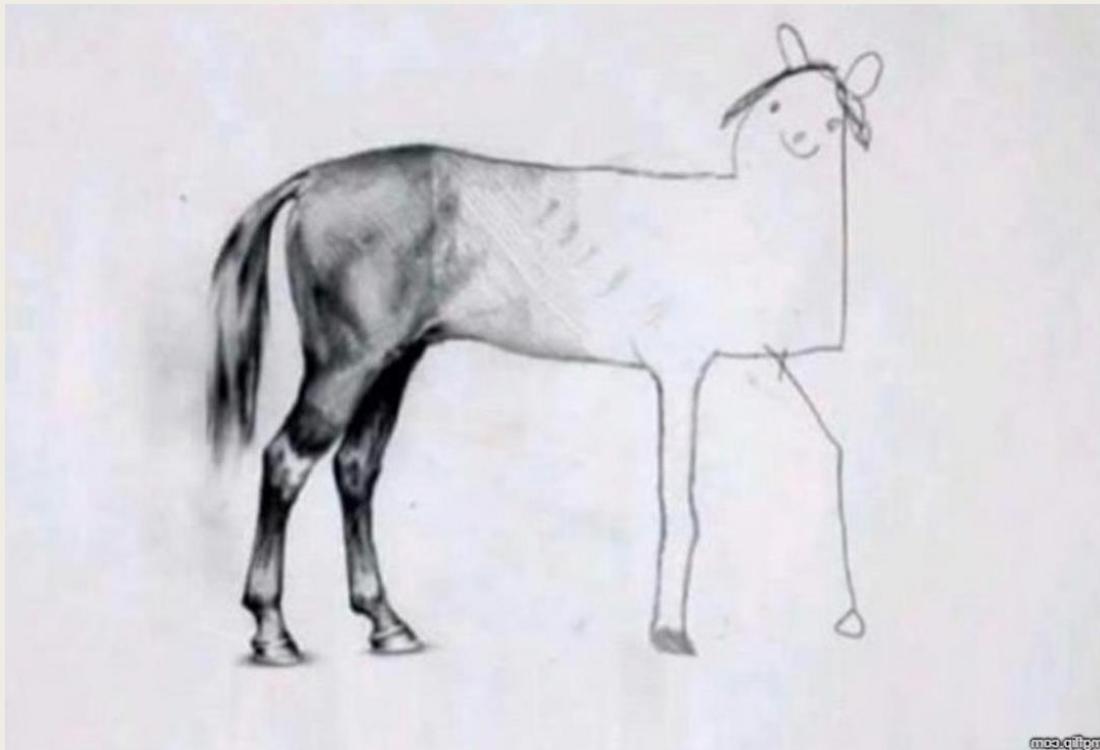
W tabelach poniżej zestawiono szczegółowe wskazówki dotyczące prowadzenia pomiarów stężeń radonu za pomocą detektorów pasywnych w różnych rodzajach budynków oraz w różnych miejscach pracy.

BUDYNKI MIESZKALNE WOLNSTOJĄCE, JEDNORODZINNE		
Rodzaj pomieszczenia*	Minimalna liczba detektorów	Przykład pomieszczenia / uwagi
Pokoje na parterze	• 1 detektor w pomieszczeniu	salon, sypialnia, gabinet
Pokoje na wyższych piętrach	• zależnie od układu budynku – konieczna konsultacja	
Piwnice, przyziem, suteryna	• 1 detektor w pomieszczeniu	piwnice, składy, węzły cieplownicze, garaże

BUDYNKI MIESZKALNE WIELORODZINNE		
Rodzaj pomieszczenia*	Minimalna liczba detektorów	Przykład pomieszczenia / uwagi
Mieszkania na parterze	• 1 detektor w pomieszczeniu	salon, sypialnia, gabinet
Mieszkania na wyższych piętrach	• zależnie od układu budynku – konieczna konsultacja	


BUDYNKI Z INSTALACJĄ GRUNTOWYCH WYMIENNIKÓW CIEPŁA (GWC)		
Rodzaj budynku	Minimalna liczba detektorów	Przykład pomieszczenia / uwagi
Budynki mieszkalne, budynki użyteczności publicznej, miejsca pracy	<ul style="list-style-type: none"> • 1 detektor w pomieszczeniach z wlotem systemu GWC • 1 detektor w pomieszczeniach na parterze • 1 detektor w węźle GWC 	<ul style="list-style-type: none"> • pomiar metodą aktywną przy wlocie systemu GWC w trakcie działania systemu i przy wyłącznym systemie – pomiar minimum 2÷3 h w pokojach do 30 m² • pomiar min. 3÷6 h w pomieszczeniach > 30 m²

BUDYNKI UŻYTECZNOŚCI PUBLICZNEJ (żłobki, przedszkola, szkoły, uczelnie, internaty, itp.)		
Rodzaj budynku	Minimalna liczba detektorów	Przykład pomieszczenia / uwagi
Żłobki, przedszkola	<ul style="list-style-type: none"> 1 detektor w każdej klasie/sali na parterze, gdzie przebywają dzieci 1 detektor w pokojach, gdzie pracownicy przebywają > 2 h / dobę 	sale zajęciowe w żłobkach, przedszkolach oraz pokoje personelu
Budynki szkolne	<ul style="list-style-type: none"> 1 detektor w każdej klasie/sali, pracowni na poziomie parteru 1 detektor w pokojach dla personelu na poziomie parteru, gdzie pracownicy przebywają > 2 godzin / dobę 	klasy, pracownie, sale wykładowe, laboratoria, pokój nauczycielski, pokoje pracowników, portierne
Internaty	<ul style="list-style-type: none"> 1 detektor w każdej sypialni, pracowni na poziomie parteru 1 detektor w pomieszczeniach dla personelu gdzie personel, obsługa przebywają > 2 godzin / dobę 	sypialne, pokoje pracy, pokoje personelu, portierne.
Uczelnie	<ul style="list-style-type: none"> 1 detektor w salach wykładowych na parterze i w laboratoriach, w pokojach gdzie pracownicy, studenci przebywają > 2 godzin / dobę 	sale wykładowe, laboratoria, pokoje pracowników, portierne.


MIEJSCA PRACY		
Rodzaj pomieszczenia*	Minimalna liczba detektorów	Przykład pomieszczenia / uwagi
Pomieszczenia o powierzchni do ok. 150	<ul style="list-style-type: none"> 1 detektor w każdym pomieszczeniu na parterze, czas pracy powyżej 2 godz./dobę 	małe biura, małe sklepy, warsztaty, małe banki, gabinety lekarskie, pensjonaty, małe hotele, itp.
Pomieszczenia o powierzchni do ok. 1 000 m ²	<ul style="list-style-type: none"> 1 detektor na 150 m², czas pracy powyżej 2 godz./dobę 	kina, teatry, hotele, centra administracyjne, hale sklepowe, hale warsztatowe, muzea, magazyny, duże powierzchnie biurowe, itp.
Pomieszczenia o powierzchni do ok. 5 000 m ²	<ul style="list-style-type: none"> 1 detektor na 500 m² czas pracy powyżej 2 godz./dobę detektor w pobliżu gablot z eksponatami np. próbek geologicznych (możliwość wysokich stężeń radonu!) 	sklepy wielkopowierzchniowe muzea, sale wystawowe, biblioteki magazyny, itp.
Bardzo duże powierzchnie powyżej 5 000 m ²	<ul style="list-style-type: none"> 1 detektor na każdy odrębny obszar o różnych warunkach środowiskowych 	sklepy wielkopowierzchniowe, centra administracyjne, magazyny, hale produkcyjne.

SPECYFICZNE MIEJSCA PRACY		
Podziemne zakłady górnicze (kopalnie)	specyfikę wykonywania pomiarów w podziemnych zakładach górniczych (kopalniach) przedstawiono w ANEKSIE 2	
Podziemne trasy turystyczne (jaskinie, kopalnie, pomiarne, piwnice, pozostałe)	specyfikę wykonywania pomiarów w podziemnych trasach turystycznych przedstawiono w ANEKSIE 3	
Wydobywanie ropy lub gazu ziemnego	<ul style="list-style-type: none"> detektor na wysokości od 1 do 1,5 m, w odległości co najmniej 20 cm od ściany 	<ul style="list-style-type: none"> wiertrnie - rozdzielnie, maszynownie, warsztaty miejsca pracy obsługi wiertni oraz miejsca pracy pracowników utrzymania ruchu tłocznie, magazyny techniczne, warsztaty, laboratoria ptuczkowe, laboratoria badawcze, rdzeniownie i inne, zlokalizowane w odległości do 100 m od wieży wiertniczej
Stacje uzdatniania wody	<ul style="list-style-type: none"> 1 detektor na 150 m² detektor na wysokości od 1,5 do 2 m, w odległości co najmniej 20 cm od ściany 	<ul style="list-style-type: none"> stacje filtrów, aeratory, sprzętki, hydroforownie pomieszczenia, w których znajdują się zbiorniki (zwłaszcza otwarte)
Jaskinie i inne naturalne pustki w górotworze	<ul style="list-style-type: none"> omiar zawsze przed rozpoczęciem pracy speleologów, klimatologów, biologów i innych pracowników nauki na nowych stanowiskach pracy. 1 detektor w każdym punkcie na wysokości od 1,5 do 2 metrów, w odległości co najmniej 20 cm od ściany 	miejsca pracy speleologów, klimatologów, biologów, geologów i innych pracowników nauki
SPA podziemne, sanatoria radonowe	<ul style="list-style-type: none"> 1 detektor na 150 m² detektor na wysokości od 1,5 do 2 m, w odległości co najmniej 20 cm od ściany 	miejsca pracy, gdzie wykonywane są zabiegi, budynki biurowe, sklepy z pamiątkami
Podziemne parkingi, przestrzenie handlowe, tunele, magazyny, stacje metra itp.	<ul style="list-style-type: none"> 1 detektor na 150 m² detektor na wysokości od 1,5 do 2 m, w odległości co najmniej 20 cm od ściany 	magazyny, tunele, studienki rewizyjne, pomieszczenia techniczne
Parki wodne, baseny	<ul style="list-style-type: none"> 1 detektor na 150 m² 	baseny w pomieszczeniach zamkniętych

Our suggestions

In summary, the national radon action plan contains provisions regarding radon, but they require further clarification and detailing

Thank you for your attention